Some Considerations on Lattice Gauge Fixing

نویسنده

  • Massimo Testa
چکیده

Some problems related to Gribov copies in lattice gauge-fixing and their possible solution are discussed. 1 Gribov and Gauge-Fixing Problem The Faddeev-Popov[1] quantization gives a meaning to the formal (euclidean) expectation value of a gauge invariant observable operator: 〈O〉 = ∫ δA exp[−S(A)] O(A) ∫ δA exp[−S(A)] (1) The Faddeev-Popov method requires the choice of a gauge fixing condition: f(A) = 0 (2) in terms of which we define ∆(A) as: ∆(A) · ∫

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of Gauge Fixing Procedures on the Connection Machines CM2 and CM5

Gauge fixing is a frequent task encountered in practical lattice gauge theory calculations. We review the performance characteristics of some standard gauging procedures for non-Abelian gauge theories, implemented on the parallel machines CM2 and CM5. †

متن کامل

Gauge fixing, families index theory, and topological features of the space of lattice gauge fields

The recently developed families index theory for the overlap lattice Dirac operator is applied to demonstrate an interplay between topological features of the space of SU(N) lattice gauge fields on the 4-torus and the existence question for G0 gauge fixings which do not have the Gribov problem. The continuum version of our considerations leads to topological obstructions to the existence of suc...

متن کامل

A global optimization method for Landau gauge fixing in Lattice QCD

An algorithm for gauge fixing to the Landau gauge in the fundamental modular region in lattice QCD is described. The method, a combination of an evolutionary algorithm with a steepest descent method, is able to solve the problem of the nonperturbative gauge fixing. The performance of the combined algorithm is investigated on 8, β = 5.7, and 16, β = 6.0, lattice SU(3) gauge configurations. Latti...

متن کامل

An algorithm for Landau gauge fixing in Lattice QCD

An algorithm for gauge fixing to the minimal Landau gauge in lattice QCD is described. The method, a combination of an evolutionary algorithm with a steepest descent method, is able to solve the problem of the nonperturbative gauge fixing. The performance of the combined algorithm is investigated on 8, β = 5.7, and 16, β = 6.0, lattice SU(3) gauge configurations.

متن کامل

Lattice gauge-fixing for generic covariant gauges

We propose a method which allows the generalization of the Landau lattice gauge-fixing procedure to generic covariant gauges. We report preliminary numerical results showing how the procedure works for SU(2) and SU(3). We also report numerical results showing that the contribution of finite lattice-spacing effects and/or spurious copies are relevant in the lattice gauge-fixing procedure.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008